population dynamics

cake eater

Zettel

Some terms/definitions

PhD Thesis by Hidalgo:1

selection of alternative terms for the “birth/death” events:

alternative terms for the “particles”:

Many related papers I found use Bayesian inference or varational inference as starting point -> maybe mention these “tags” for families of related works

Large deviations

many papers with population dynamics mention large deviations

The mathematical theory of large deviations is concerned with the exponential decay of the probability of extreme events while the number of observations grows.2

Generally, the Ellis book3 seems to be the main entry point for the theory of large deviations

collection of papers from different sources

from Lu, Lu & Nolen

The Lu, Lu & Nolen paper doesn’t seem to have many citations of “related work”

from Hidalgo’s PhD thesis

misc

new papers

ideas to look for

Parallel Tempering / multiple walkers metadynamics

Footnotes


  1. E. Guevara Hidalgo, Cloning Algorithms: from Large Deviations to Population Dynamics, PhD thesis, Université Sorbonne Paris, 2018 ↩︎

  2. J. Mehl, T. Speck, and U. Seifert, Phys. Rev. E 78, 011123 (2008) ↩︎ ↩︎

  3. R. S. Ellis, Entropy, large deviations, and statistical mechanics (Springer, 2007) ↩︎

  4. Q. Liu, and D. Wang, Stein variational gradient descent: A general purpose Bayesian inference algorithm. In Advances In Neural Information Processing Systems, pp. 2378–2386, 2016. ↩︎

  5. C. Giardinà, J. Kurchan, V. Lecomte, and J. Tailleur, J. Stat. Phys. 145, 787 (2011) ↩︎ ↩︎ ↩︎

  6. P. Del Moral, A. Doucet, and A. Jasra: J. R. Stat. Soc., Ser. B, Stat. Methodol. 68, 411–436 (2006) ↩︎

  7. P. Del Moral and J. Garnier, Ann. Appl. Probab. 15, 2496 (2005) ↩︎

  8. A. Sherman, C. Peskin, SIAM J. Sci. and Stat. Comput. 1986, 7 (4), 1360–1372 ↩︎

  9. J. B. Anderson, The Journal of Chemical Physics 63, 1499 (1975) ↩︎

  10. D. Aldous and U. Vazirani, in Foundations of Computer Science, 35th (IEEE, 1994), pp. 492–501. ↩︎

  11. P. Grassberger, Comp Phys Comm 147 (2002) 64–70 ↩︎

  12. W. R. Gilks, G. O. Roberts, and E. I. George, “Adaptive Direction Sampling,” The Statistician, vol. 43, no. 1, p. 179, 1994 ↩︎

  13. G. Rotskoff, S. Jelassi, J. Bruna, and E. Vanden-Eijnden, “Global convergence of neuron birth-death dynamics,” presented at the 36th International Conference on Machine Learning (ICML 2019), 2019. ↩︎

  14. T. Nemoto, E. G. Hidalgo, and V. Lecomte, Physical Review E, vol. 95, no. 1, p. 012102 (2017) ↩︎

  15. S. Reich, S. Weissmann: SIAM/ASA J. Uncertainty Quantification, 9(2), 446–482 (2021) arXiv ↩︎

  16. M. Lindsey, J. Weare, and A. Zhang, “Ensemble Markov chain Monte Carlo with teleporting walkers,” arXiv:2106.02686 ↩︎

  17. P. Visco, F. van Wijland, and E. Trizac, Phys. Rev. E 77, 041117 (2008) ↩︎

  18. Coppex et al., Phys. Rev. E 69, 11303 (2004) ↩︎

  19. M. J. Simpson, J. A. Sharp, and R. E. Baker, Physica A: Statistical Mechanics and its Applications, vol. 395, pp. 236–246, (2014) ↩︎